skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelsey, Katharine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is exposing coastal landscapes to more flooding, in addition to rapidly rising temperatures. These changes are critical in the Arctic where the effects of sea level rise are exacerbated by the loss of sea ice protecting coasts, subsidence as permafrost thaws, and a projected increase in storms. Such changes will likely alter the land-atmosphere gas exchange of high-latitude coastal ecosystems, but the effects of flooding with warming remain unexplored. In this work we use a field experiment to examine the interacting effects of increased tidal flooding and warming on land-atmosphere CO2and CH4exchange in the coastal Yukon–Kuskokwim Delta, a large sub-Arctic wetland and tundra complex in western Alaska. We inundated dammed plots to simulate two levels of future flooding: low-intensity flooding represented by one day of flooding per summer-month (June, July and August), and high-intensity flooding represented by three-consecutive days of flooding per summer-month, crossed with a warming treatment of 1.4 °C. We found that both flooding and warming influenced greenhouse gas (GHG) exchange. Low-intensity flooding reduced net CO2uptake by 20% (0.78µmol m−2s−1) regardless of temperature, and marginally increased CH4emissions 0.83 nmol m−2s−1(33%) under ambient temperature, while decreasing CH4emissions by −1.96 nmol m−2s−1(40%) under warming. In contrast, high-intensity flooding restored net CO2uptake to control levels due to enhanced primary productivity under both temperature treatments. High-intensity flooding decreased CH4emissions under ambient temperature by 0.76 nmol m−2s−1(30%), but greatly increased emissions under warming by 4.68 nmol m−2s−1(265%), presumably driven by increased plant-mediated CH4transport. These findings reveal that GHG exchange responds rapidly and non-linearly to intensifying flooding, and highlight the importance of short-term flooding dynamics and warming in shaping future carbon cycling in this Arctic coastal wetland. 
    more » « less
    Free, publicly-accessible full text available September 11, 2026
  2. This dataset was used to answer the question: how do flooding and warming alter carbon dioxide and methane flux from coastal wetlands of the Yukon-Kuskokwim (Y-K) Delta (Western Alaska, USA)? Over two years, we simulated periodic summer tidal flood events at two severity levels and passively increased summer temperatures in a full-factorial field experiment, and the response of gas measured the response of carbon dioxide and methane fluxes. We simulated low-severity and high-severity flooding to represent near-future flooding regimes for the Y-K Delta, projected respectively in the next ~5 and ~10 years. The experiment was established in a wet sedge-shrub meadow, an ecotype covering greater than 10% of the vegetated area of the central coast of the Y-K Delta. We measured gas fluxes approximately twice per week using static chambers during the summer of 2023. 
    more » « less
  3. While the Arctic warms rapidly, several coastal tundra regions face increasing threats from altered flooding regimes. Yet, how flooding shapes coastal tundra ecosystems remains largely unknown. We experimentally examined how increased tidal flooding, under both ambient and elevated temperatures, influences key drivers of ecosystem functioning: micro-environment, vegetation, and organic matter decomposition. Data were collected across three summers (2022-2024) in a low-Arctic coastal tundra heath of the Yukon-Kuskokwim Delta (Alaska) – one of the largest high-latitude riverine deltas in North America. In May 2022, soon after snowmelt, we selected seven blocks within the focal tundra heath. Each block contained six plots, for a total of 42 plots. Plots within blocks were randomly assigned to a factorial combination of experimental monthly tidal floods (three levels: no-flooding, low-severity flooding, and high-severity flooding) and experimental warming (two levels: ambient and higher temperatures). We focused on three response categories: (1) micro-environmental changes, including air and soil temperatures, soil active layer thickness, redox potential, salinity, potential of hydrogen (pH), and chemistry; (2) vegetation responses, such as aboveground community composition and biomass, plant height, and root production; and (3) responses of organic matter decomposition (mass loss, decomposition rate, and stabilization factor). 
    more » « less
  4. The Yukon-Kuskokwim Delta in western Alaska is one of the world’s largest high latitude wetland ecosystems, and the low topographic relief of this region makes it especially vulnerable to increased flooding and saltwater intrusion. To investigate the effects of changing moisture and salinity on carbon dioxide (CO2) and methane (CH4) fluxes from this landscape, an 11-week incubation experiment was conducted on soil from three different plant communities with differing tidal inundation frequencies: a lowland wetland that experiences tidal inundation multiple times per year, an upland wetland that experiences tidal inundation infrequently, and an upland tundra community that only inundates during large storm events. Soil mesocosms from each community were exposed to a factorial combination of one of three moisture levels (40%, 70%, or 100% saturation) at one of four salinity levels (freshwater, 3, 6, or 12 parts per thousand (ppt)). CO2 and CH4 concentrations were sampled weekly and fluxes for each mesocosm. 
    more » « less
  5. This dataset was used to answer the question: to what extent do flooding and warming alter plant-community structure in the high-latitude coastal wetlands of the Yukon-Kuskokwim (Y-K) Delta (Western Alaska, USA)? Over two years, we simulated periodic summer tidal flood events at two severity levels and passively increased summer temperatures in a full-factorial field experiment, and measured alterations in aboveground plant functional group (PFG) biomass and composition. We simulated low-severity and high-severity flooding to represent near-future flooding regimes for the Y-K Delta, projected respectively in the next ~5 and ~10 years. The experiment was established in a wet sedge-shrub meadow, an ecotype covering greater than 10% of the vegetated area of the central coast of the Y-K Delta. We characterized aboveground plant-community structure using the point intercept frequency (PIM) methodology. We clumped vascular plant species into five broad PFGs: graminoids, deciduous and evergreen shrubs, forbs, and standing-dead graminoids. 
    more » « less
  6. Vertebrate herbivore excrement is thought to influence nutrient cycling, plant nutrition, and growth; however, its importance is rarely isolated from other aspects of herbivory, such as trampling and leaf removal, leaving questions about the extent to which herbivore effects are due to feces. We hypothesized that as a source of additional nutrients, feces would directly increase soil N concentrations and N2O emission, alleviate plant, and microbial nutrient limitations, resulting in increased plant growth and foliar quality, and increase CH4 emissions. We tested these hypotheses using a field experiment in coastal western Alaska,USA, where we manipulated goose feces such that naturally grazed areas received three treatments:feces removal, ambient amounts of feces, or double ambient amounts of feces. Doubling feces marginally increased NH4 +-N in soil water, whereas both doubled feces and feces removal significantly increased NO3--N; N2O flux was also higher in removal plots. Feces removal marginally reduced root biomass and significantly reduced productivity (that is, GPP) in the second year, measured as greater CO2 emissions. Doubling feces marginally increased foliar chemical quality by increasing %N and decreasing C:N. Treatments did not influence CH4 flux. In short, feces removal created sites poorer in nutrients, with reduced root growth, graminoid nutrient uptake, and productivity. While goose feces alone did not create dramatic changes in nutrient cycling in western Alaska, they do appear to be an important source of nutrients for grazed areas and to contribute to greenhouse gas exchange as their removal increased emissions of CO2 and N2O to the atmosphere. 
    more » « less
  7. null (Ed.)
  8. 1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre- and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height growth rates for the most abundant tree species – aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contorta) and subalpine fir (Abies lasiocarpa). 3. Beetle-caused tree mortality reduced the average diameter of live trees by 28.4% (5.6 cm), and species dominance was altered on 27.8% of field plots with shifts away from pine and spruce. However, most plots (82.1%) were likely to recover towards pre-outbreak tree densities without additional regeneration. Region-wide maps indicated that fir and aspen, non-host species for bark beetle species with the most severe effects (i.e. Dendroctonus spp.), will benefit from outbreaks through increased compositional dominance. After accounting for individual size, height growth for all conifer species was more rapid in sites with low winter precipitation, high winter temperatures and severe outbreaks. 4. Synthesis. In subalpine forests of the US Rocky Mountains, recent bark beetle outbreaks have reduced tree size and altered species composition. While eventual recovery of the pre-outbreak forest structure is likely in most places, changes in species composition may persist for decades. Still, forest communities following bark beetle outbreaks are widely variable due to differences in pre-outbreak conditions, outbreak severity and abiotic gradients. This regional variability has critical implications for ecosystem services and susceptibility to future disturbances. 
    more » « less
  9. Abstract Rapid warming in northern ecosystems over the past four decades has resulted in earlier spring, increased precipitation, and altered timing of plant–animal interactions, such as herbivory. Advanced spring phenology can lead to longer growing seasons and increased carbon (C) uptake. Greater precipitation coincides with greater cloud cover possibly suppressing photosynthesis. Timing of herbivory relative to spring phenology influences plant biomass. None of these changes are mutually exclusive and their interactions could lead to unexpected consequences for Arctic ecosystem function. We examined the influence of advanced spring phenology, cloud cover, and timing of grazing on C exchange in the Yukon–Kuskokwim Delta of western Alaska for three years. We combined advancement of the growing season using passive-warming open-top chambers (OTC) with controlled timing of goose grazing (early, typical, and late season) and removal of grazing. We also monitored natural variation in incident sunlight to examine the C exchange consequences of these interacting forcings. We monitored net ecosystem exchange of C (NEE) hourly using an autochamber system. Data were used to construct daily light curves for each experimental plot and sunlight data coupled with a clear-sky model was used to quantify daily and seasonal NEE over a range of incident sunlight conditions. Cloudy days resulted in the largest suppression of NEE, reducing C uptake by approximately 2 g C m−2d−1regardless of the timing of the season or timing of grazing. Delaying grazing enhanced C uptake by approximately 3 g C m−2d−1. Advancing spring phenology reduced C uptake by approximately 1.5 g C m−2d−1, but only when plots were directly warmed by the OTCs; spring advancement did not have a long-term influence on NEE. Consequently, the two strongest drivers of NEE, cloud cover and grazing, can have opposing effects and thus future growing season NEE will depend on the magnitude of change in timing of grazing and incident sunlight. 
    more » « less